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c axis in the case of asymmetrical tilt boundaries, nor 
the real nature of interactions between the two types 
of dislocations is known. Therefore, it is difficult to 
describe exactly the formation of irregularly shaped 
rings. 

(vi) All the above cases of ring-formations have been 
discussed for the common CdI2 polytype 4H excepting 
the upper part of crystal No.3 which is a mixture of 
types 4H and 48R. In addition, rings have also been 
observed on Laue photographs of other polytypes 
(photographs not reproduced). 

Density of dislocations 

The density of dislocations inside the boundaries can 
be calculated from the X-ray photographs as outlined 
in part I. 

Conclusion 

The most significant conclusions emerging from the 
experimental findings are (i) the occurrence of triple 
nodes of dislocations, created by simultaneous slip 
along the directions of close packing and (ii) the con- 
stancy of their spacing in most cases. The latter points 
to the generation of dislocations at equal intervals 
during crystal growth. It is noteworthy that the ring- 
formations have mostly been observed in the lower 
parts of the crystals, the upper parts usually show- 

ing either single spots or only a small amount of arcing. 
This is to expected because the conditions are favour- 
able for the formation of a large number of disloca- 
tions in the initial stages when the saturation is high 
and the rate of growth is rapid. The phenomenon of 
ring formation shows that under certain suitable cir- 
cumstances these dislocations can arrange themselves 
into highly symmetrical threefold boundaries. Apart 
from the X-ray methods used by us, electron micro- 
scopy can also be profitably employed to reveal the 
arrangements of dislocations inside the crystals. How- 
ever, Forty (1960) has observed that CdI2 crystals de- 
compose under the action of the electron beam. 
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A computerized procedure based on the Evjen method for the direct summation of Madelung energies 
of centrosymmetric structures is described. The values obtained are strictly according to the definition 
of the Madelung function and the accuracy depends only on the number of terms taken into considera- 
tion. Madelung energies for a variety of structures calculated by this method are compared with values 
obtained by various other methods. 

Introduction 

Madelung constants of most simple ionic salts are 
known accurately, but analyses of the electrostatic 
interactions in numerous ionic and ion-dipole com- 
plexes still have to be made. Methods for the rapid 
evaluation of the Madelung energies of complicated 
structures are thus highly desirable and it was surpris- 
ing to find that almost negligible use has been made 
of the most obvious methods, viz. direct evaluation of 
lattice sums using computers. Indirect methods which 

often involve mathematical expressions and correction 
factors which are much more complicated than the 
basic equation (U=-(ze)2c~/r) which defines the 
Madelung function, are usually employed. The most 
popular procedure uses the method of Bertaut (1952) 
with correction factors given by Templeton, 1955 (see 
also Jones & Templeton, 1956). Evjen (1931) cells are 
used occasionally together with various devices (Ver- 
wey & Heilmann, 1947) to compensate for surface 
dipoles (de Boer, 1948; Verwey, de Boer & van Santen, 
1948). Wood (1959) suggested a method for eliminating 
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surface dipoles by summat ion  over 'neutral  molecules '  
and applied the method  to three simple salts. The actual 
procedure is described extremely vaguely and the results 
are confused. The computer  t ime of 8 hr  which was 
used per calculation also appears to be unreasonable.  
Frank (1950) added fictitious charges at various points 
in the structure to ensure convergence. It will be shown 
that  most  of the problems are not real and that the 
Madelung energy for any centrosymmetric structure 
can be computed directly in a mat ter  of minutes.  

Procedure 

The electrostatic or Madelung energy of an ionic 
crystal is given by the sum of an infinite series with 
terms corresponding to all pairwise interactions be- 
tween ions considered as point charges. The series con- 
verges and is evidently well suited for summat ion  by 
digital methods.  The obvious sum to evaluate is 

f q~qj u -  N ~  ~ _ , S S  
20 h-~--n k = - - n  l = - - n  i=1 j = l  r t j  

where: 

r~j = distance between ions i and j ,  
q~,j =electrostat ic  charges on the ions, 
f = n u m b e r  of ions in one formula unit (reference 

ions), 
c - -number  of ions in one unit cell, 
N =Avogad ro  number ,  
D = dimensional  constant, 
n = integer large enough to ensure convergence, 
h,k,l=denote unit  cells in the three crystallographic 

directions. The i atoms are taken in the cell de- 
fined by the current values of h, k and l while 
the j atoms are always taken in the zero cell. 

In words" all the interactions between the ions of one 
formula unit in the centre of a block consisting of 

(2n + 1) 3 unit  cells, and all the ions in that  block are 
calculated successively and the sum of the interactions 
is accumulated as the calculation proceeds. The input 
parameters are the cell constants, the fractional coor- 
dinates of all c ions with t h e f i o n s  first in the parameter  
list, suitable charge numbers  for each ion and a defini- 
tion of the extent of the calculation - the number  n. 
To assess the rate of convergence it is convenient to 
have the sub-totals corresponding to the interactions 
of the chosen formula unit with all the ions in the 
blocks defined by h,k,l=O,- 1 to 1 , - 2  to 2, etc. as 
output. These blocks contain 1, 27, 125, etc. unit  ceils. 

The input  parameters and the results (Table 1) ob- 
tained for the NaC1 structure are given as an illustra- 
t ion: n = 1 0 ,  a0=5.64, e = 8 , f = 2 .  

x y z q 
0 0 0 1 
0 0 0.5 - 1  
0 0.5 0 - 1  

0.5 0 0 - 1  
0.5 0.5 0.5 - 1  

0 0.5 0.5 1 
0.5 0 0.5 1 
0.5 0.5 0 1 

The convergence is satisfactory and the complete cal- 
culation over the 9261 cells took less than  5 minutes 
of IBM 360/40 computer  time. 

An analogous summat ion  for the CsC1 structure gave 
convergence of - Uto - 5-602 kcal.mole -a. The method 
breaks down because of the large surface dipole created 
by this method of generating the volume included in 
the calculation. This dipole does not occur in the NaC1 
structure since the calculation is terminated in a sur- 
face containing a regular al ternation of positive and 
negative charges and hence no surface dipoles. A sim- 
ilar surface can be arranged in the CsCI structure by 

Direct 

Block NaCI 
1 171.057 
2 205-246 
3 205"299 
4 205.305 
5 205.306 
6 205.306 
7 205.306 
8 205-306 
9 205.306 
10 205.306 
11 205-306 

a0 5.64 

1.74755 

Johnson & 
Templeton (1961) 1.74756 

Table 1. U (kcal.mole -x) 

Transformed cell 

• ZnS CaF2 
832.925 561.647 
927.838 706.205 
926.959 705.584 
926.779 705.596 
926.711 
926.678 

5-409 5-463 

1-3878 5"0379 

CsCl 
131.519 
163-035 
163.474 
163.549 
163.578 
163.592 
163.600 
163.605 
163.609 
163.611 
163.612 

4-12 

1.7631 

1"3881 5"0388 1"76268 

CsCI 
64-212 

164"097 
163"664 
163.668 
163"668 
163.668 

E~en cells 
^ 

C u 2 0 "  
315"582 
797"610 
796"083 
796"073 
796"063 
796"046 
796"038 
796"039 
796"050 
796"064 
796"083 

4.12 4"27 

1.7626 4.4425 

4-4425 

E~en surface 

Cu20 
493.211 
400.990 
393.811 
391.839 
391.027 
390.607 
390.370 
390.229 
390.146 
390-094 
796-122 

4"27 

4"4427 
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transformation to a distorted NaCI structure using the 
matrix (Il l /I-[I/TIT).  For this transformed structure 
the input parameters are" n = 10, a0 = b0 = Co = 7.137/~; 
c t = f l = 7 =  109°26'; x,y ,z ,q  as for NaCI, and the out- 
put values as shown in Table 1. This method applies 
only to structures which can be transformed to cells 
bounded by neutral faces, e.g. zinc blende and fluorite. 
The transformation matrices are the same as for CsC1 
and the results are summarized in Table 1. For struc- 
tures like rutile and cuprite, however, such neutral faces 
do not exist and this method can therefore not be ap- 
plied (Boeyens & Gafner, 1968). 

Another way of eliminating the surface dipoles is 
by using Evjen cells instead of the conventional crystal- 
lographic unit cells. In an Evjen cell any ion shared 
by more than one unit cell is placed, properly scaled, 
at all equivalent positions in the unit cell. Thus ions 
lying at the corners, on the edges or in the faces of 
the unit cell will appear 8, 4 or 2 times and the charges 
will be scaled by factors of ~, ¼ and ½. By generating 
a block of unit cells as described before, all these frac- 
tional charges will add up to unit charges in the body 
of the block and will appear as fractions only on the 
surface where the summation is terminated. Whenever 
one of the reference ions occupies such a position, a 
multiplier of 8, 4 or 2 must be introduced to get its 
contributions calculated on the right scale. Care should 
also be taken not to calculate the interaction of a ref- 
erence ion with an equivalent fraction with which 
it coincides after translation (i.e. r i j=0).  Typical 
results obtained by this method are also shown in 
Table 1. 

To optimize the program efficiency the block needed 
for convergence can be generated from conventional 
unit cells and then corrected for the constant surface 
error by enveloping this volume in an Evjen surface. 
Correction for surface dipoles is thus not applied con- 
tinuously and is included only when the outermost 
shell is considered. As shown in Table 1 for Cu20 the 
correction is contained only in the last entry (block 11) 
and hence the course of the convergence is not as 
striking as before, but obviously the correct answer is 
again obtained. 

The Madelung energies of ionic salts containing 
complex ions are often of importance. (Blake & Cotton, 
1963). In such ions the charges can be situated as frac- 
tions at various centres on the ion. The same is true 
for fractional charges on a dipole in ion-dipole com- 
plexes (Boeyens & Gafner, 1968). Obviously the elec- 
trostatic interactions between such charge centres on 
the same ion or dipole do not contribute to the Made- 
lung energies and can easily be excluded in a computer 
summation. 

Results 

Table 2 shows the results obtained by direct summation 
for a variety of structures. These results are all exact 
and higher accuracy can easily be obtained by increas- 
ing the extent of the calculations. Even in the large 
structures the time factor is not too important. The 
calculations were all done in a matter of minutes on 
the IBM 360/40H. The slight discrepancies occurring 
in Table 1 are all due to rounding-off errors and dis- 
appear if double precision (64 bit) arithmetic is used. 
The corresponding values obtained by previous workers 
using other techniques are also given. All the Madelung 
constants (c0 listed are based on the closest interionic 
approach and the smallest charge in the structure. In 
several cases this quantity is not really meaningful and 
since authors often do not give a precise definition of 
their Madelung constants, it is suggested that for com- 
plicated structures the Madelung energy should always 
be given in either kcal.mole -1 or eV. 

The program described here can handle any sym- 
metry but its applicability to structures without a centre 
of symmetry at the origin is doubtful. If the CsC1 
structure is described in terms of the unit cell with 
origin at ¼,¼,¼ from the centre of symmetry, a Made- 
lung energy of - 5 . 6  kcal.mole -1 would be calculated. 

As seen from the two calculations for CsC1 in Table 
1, convergence is faster for Evjen cells than for suitably 
transformed cells and since the introduction of an 
Evjen surface speeds up the calculation this last pro- 
cedure is recommended for general use. 

A Fortran listing of this program and a companion 
transformation program which can also be used to 
prepare the input data for the Madelung program can 
be obtained from the authors. 
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